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Derivation of the effective potential for quantum 
electrodynamics 
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School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, 
Dublin 4,  Ireland 

Received 28 March 1978 

Abstract. The functional formalism for the effective potential is briefly reviewed for the 
case of a scalar field theory, using the method of steepest descents. This formalism is then 
applied to quantum electrodynamics and an integral expression is derived for the effective 
potential, in the one-loop approximation. This expression is used to verify the absence of 
spontaneous symmetry breakdown for quantum electrodynamics in one space and one time 
dimension. 

1. Introduction 

Spontaneous symmetry breakdown for a given field theory may be investigated by 
calculating the effective potential from the Lagrangian density (Coleman and Weinberg 
1973, Coleman 1975). The behaviour of the derivative of the effective potential with 
respect to the ’classical field’ determines whether the symmetry of the Lagrangian 
density is spontaneously broken or not. In  this paper the effective potential for 
quantum electrodynamics is considered, i.e. an explicit expression is derived for the 
effective potential in the one-loop approximation; this expression is then used to show 
that, to this order at least, there is no spontaneous symmetry breakdown for the case of 
quantum electrodynamics in one space and one time dimension, which is the expected 
result. 

This introduction reviews briefly the functional formalism developed for the 
effective potential, in the context of a scalar field theory (Coleman and Weinberg 1973, 
Colemm 1975, Iliopoulos et a1 1975); in the remainder of the paper this formalism is 
applied to the more interesting case of quantum electrodynamics. 

The effective potential is defined in terms of the effective action; consider the 
Lagrangian density for a scalar field 

z= $(~3,4)~ -:p,’d2 - (A/4!)q54- Jq5 (1.1) 

where J ( x )  is some external source, a c-number function of space and time. 
The connected generating functional W [ J ]  is defined by 

elw[J’, (o+lo->, (1 ‘2) 

i.e. it is the vacuum-to-vacuum amplitude in the presence of the source J ( x ) ,  W [ J ]  
generates connected Feynman diagrams. 
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The effective action r[&] is defined by a functional Legendre transformation: 

where q5c(x)-the 'classical field'-is given by 

Equation (1.3) implies that 

sr/sq5,(x) = -J(X).  

I t  is well known that r[&] generates one-particle irreducible Feynman diagrams 
(Coleman and Weinberg 1973, Coleman 1975, Abers and Lee 1973, chaps 11,12 and 
16). 

The effective action may also be expanded in powers of the derivative of q5c around 
the point cPc = constant: 

(1.6) 

where the function V(&) is the effective potential. 
The Lagrangian density (1.1) is invariant under the transformation 4 + -4 pro- 

vided that J is set equal to zero; spontaneous symmetry breaking occurs if 4 develops a 
non-zero vacuum expectation value, i.e. 4c as defined in equation (1.4) is non-zero; 
since the source J is zero this corresponds to 

w w , ( x )  = 0, 4 c #  0.  (1.7) 

The vacuum expectation value is usually taken to be translation invariant so that 
equations (1.6) and (1.7) immediately lead to 

d V/d4, = 0, 4 c  f 0.  (1.8) 

Thus, spontaneous symmetry breakdown can be investigated by examining the minima 
of the effective potential V(bC). 

The evaluation of V(4,) involves an infinite summation of graphs; however, a 
suitable approximation scheme has been developed, known as the A expansion, which 
involves the method of steepest descents (Iliopoulos et a1 1975). The vacuum-to- 
vacuum amplitude is written as a Feynman path integral: 

with 

The exponent in the numerator of the right-hand side of equation (1.9) is expanded 
around the point 40[J] at which it is stationary. This leads to an expansion in powers of 
A for W[J] and hence, through equations (1.3) and (1.6), to a corresponding series for 

The effective potential can be given a physical interpretation. I t  is the expectation 
value of the Hamiltonian density in a state la) for which (alXla) is stationary and which 
is constrained to satisfy (ala) = 1 and ( a ( d l a )  = #c where # is some (relevant) field; 
normally la) is the vacuum. 

V(4C). 
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In the following sections, the formalism described above is applied to a theory with 
more physical content, namely quantum electrodynamics. 

2. The effective potential for quantum electrodynamics 

2.1. The path integral 

The vacuum-to-vacuum amplitude for quantum electrodynamics is given by the path 
integral expression: 

where 

zfree= &(ia'-p)rL-!F,P''-ia. AI2/25 

with ( a .  A)2/25 a gauge-fixing term and 

2 = Yf,,, + 9 
with 

2'' = - e & , $  + fji,b + $7 + J,AW (2.4) 

where 7, f ,  J, are source terms coupling to the spinor fields &, 1,4 and the photon field 

The method of steepest descents consists in expanding the exponent in the numera- 
tor of the path integral expression around the points 14~[f], &0[77], AL[J] at which it is 
stationary. These points must satisfy the equations of motion following from the 
Lagrangian density (2.3); this leads to the three coupled equations: 

A,. 

a,(FO,,) + J, +a, (a . A ~ ) / (  = e&Or,Jlo. (2.7) 

* = * O + &  & = $ 0 + & ,  A,=AO,+A,. (2.8) 

The expansion is carried out by the substitution - 

where 

20= &oo(ia'-CL)IJIO-e&OA*o-~F~~~'' - ( a .  A 0 ) 2 / 2 5 + f $ 0 + & 0 ~  +J,Ag. (2.10) 

Equation (2.9) is derived by using the above equations of motion to eliminate terms and 
by dropping two divergence terms. 

Y = Y o + & K 4  - ! F , ~ ~ " - e 2 ( & o & K - ' ( k ~ o ) - ( a ,  ~ i ) ~ / 2 5  
Some of the terms in equation (2.9) can be grouped into the form &K4: 

- e (& +f)A0(4 + x )  - 4 4  +k)k(4 + x )  (2.11) 
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where 4 has been written 

J=4+x (2.12) 

and K and x are connected by the choice 

KX = (2.13) 

The freedom of gauge may be used to put A0 = 0 and the last term in equation (2.1 1) will 
not be considered since when 2’ is rescaled with J, + h1’2J, etc, this term is of order h3. 

Equation (2.11) may be made more symmetric by using the following three 
equations (Abers and Lee 1973, chap. 14): 

(2.14) I l ’  

- -  
-$,yF”” = d y ~A,(x)K@’”(x, y )A, (y )  

where 

KWY(X, y )  = -(a’g@’” -a”a”) S4(x - y )  

1 1 
--(d. A)’ = -- 1 d4y A,(x) aw’auA,(y) S4(x - y )  

25 26 
(2.15) 

and 

The path integral expression (2.1) now is 

2.2. The h expansions 

2.2.1. The h series for the connected generating functional is 

W[V, Ti ,  JI  = WO[??, Ti ,  JI + h Wl[J,O, 401 + h2 W2[$01 *01+ * . . (2.21) 
where 
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The path integral expression (2.17) becomes 

exp[ih-’(W- WO)] 

- - 5 EddlEd&l[dA,l exp[ih-’ 5 d4x(6(x)Kd(x)-5 d4y A,(x)Mw”(x, y)A,(y))l (2.23) 
5 [dI,b][d$][dA,] exp{ih-’ 5 d4x[$(id - c1.M -&,yF”” - (8 . A)2/25]} 

where the tilde on the A, have been dropped since A: = 0. 
The new integration variables in  equation (2.23), obtained from the translation 

(2.12), do not change the path integral, since functional integration is translation 
invariant. The quadratic forms in the exponents of the numerator and denominator 
give WI[I,bo, $01 when the fields are rescaled by a factor h’”. The A,-field integration is 
similar to a scalar field integration, if 0 is a scalar field, then (Coleman 1975, chap. 4) 

(2.24) 

The 4 and 4 integrations require more care since 4 and 3 and equivalently 4 and 4 are 
anticommuting objects. For such anticommuting objects, the functional integral turns 
out to be (Berezin 1966, Coleman 1975, chap. 4) 

[ [de] exp(ih-’BMO) = (det M)-’/’. 

J [d$][d$] exp(ih-’@W) = det K. 

All this leads to 

det K(det M)-”* 
i w[~,bO,~lrol= In( det K(det MO) -I/,) 

where 

and 

Then, 

W1 = -i In det(MMi’ = li Tr ln(MMi’ ) 

where Mi’  must be of the form 

(Mi’  = -(agvc, -- bk,k,)/k2. 

The requirement 

MOM;’ = 1 

leads to 

a = l ,  b =5(1+5-’) /k2.  

2.2.2. The effective action is given by 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 
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where the 'classical fields' &(x), &(x) and A',(x) are defined by 

cLc(x) = SW/Sii(X), c//c(x) = SW/h(X) ,  A',(x) = GW/SJ,(x). (2.34) 

From equations (2.21) and (2.22), 

Similarly, 

ic(x) = i o ( x )  + OM), A',(x) = O(h) 

since AO, was set equal to zero. 
The h expansion for r is 

r(rLc,~c,~',]=ro+hrl+fi2r2+. . . . 

(2.35) 

(2.36) 

(2.37) 

The To term is given by equations (2.22) and (2.23) with the use of equations (2.35) and 
(2.36): 

ro = d4x &(ia' - p (2.38) 

Equations (2.35) and (2.36) also give 

+ c =  * o + h J c  ljc=tjo+h;c A', = hA',. (2.39) 

It then follows that 

w77, ii,Jl- WO[??, ii,Jl=fiWl[@c-hJc, tjc-h;cl+. . . (2.40) 

and so 

rl = Wl =ti Tr ln(MMi'  ). 

2.2.3. The effective potential is defined as in equation (1.6) 

r[rClc, &, A',] = I d4x(- V(&, &, A',) + . . .I 

and the h expansion for V is 

v =  V,+hV1+h2V*+. . . 

(2.41) 

(2.42) 

(2.43) 

Each term in the V series is obtained from the r series by making +c, $c and A', all 
constant and dropping the d4x factor. The first term VO is then, from equation (2.38), 

vo = PJO*O. (2.44) 

The next term V1 is obtained from rl and equation (2.41) leads to 

V1 = - Tr d4k In( { - k 2 [  gY" - - 
2 k 2 - p  

(2.45) 

The next step is to take the trace, but the four-dimensional integral in  equation 
(2.45) is not easy to evaluate. The calculation of V1 is best illustrated by considering the 
simpler case of quantum electrodynamics in one space and one time dimension. 



Derivation of effective potential for QED 141 

3. Quantum electrodynamics in one space and one time dimension 

In one space and one time dimension the integrand of equation (2.45) is unchanged in 
form. The trace is obtained as follows: 

JOY ” (I(+ CL)Y ”40 = -(40)0 ( J o ) n [ Y ” ( X  + CL )Y ”Ins (3.1) 

(3.2) 

An expression such as $4 may be expressed in terms of the set of four linearly 
independent 2 X 2 matrices formed from the standard y matrices derived from the Dirac 
equation for one space and one time dimension, 

(P--CL)4=0 (3.3) 

g = y”pr = y”i(d/dx”), h . = c = l .  (3.4) 

where 

The y satisfy 

(3.5) 

These four matrices are 

1, Y”, YO, Y l .  

In  terms of these, 

+b4=al+b,y”+cy0y’ .  

A particular representation is 

0 1  ) O )  
1 0  0 -i 

where U’ are the Pauli matrices. 
Substitution of equation (3.7) into equation (3.1) leads to 

- 
4 0 ~ ”  W + CL ) “$0 

= -a Tr[ y ” W +  CL)Y ”1- b, T r [ y P y ” ( X +  C L Y ~ I  - c Tr[yny’y ” ( X +  p ) y ” l .  

(3.9) 

The traces may be calculated with the use of standard trace theorems (Bjorken and 
Drell 1964); restricted to one space and one time dimension the result is 

40 Y” (X + CL) ~ ~ $ 0  = -2pag”” - 2(b”k” + b ”k Ir - b . kg””) - 2 p c ~ ” ”  

where 

- 
(3.10) 

(3.11) 
0 1  b” = g”“b, b .  k=boko-b ’k ’  
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Equation (2.45) for V1 now becomes, using equation (3.10) and with the choice 6 = - 1: 

i d2k 2e2(pa - b .  k )  
k2(k2 - p2)  

VI = -- Tr 1 - In[ ( 1 + 
2 (27d2 

(b”k,+b,k’+pcEw”g,,) . 1 2e2 + 
k2(k2-p2)  

(3.12) 

The second term in the integrand can be diagonalised by finding its eigenvalues, which 
are 

(3.13) A = b .  k *(b2k2+p2c2)lI2 

with 

b 2 =  (b0)2-(b1)2 k2=(k0)2-(k1)2.  (3.14) 

Thc trace in equation (3.12) may now be taken, 

A compact notation is used here, V1 is the sum of two terms, the first corresponding to 
the sum of pa and the square-root term, the second to the difference. 

The integrals can be evaluated by changing to a Euclidean metric; k o  is continued 
analytically to iko; this corresponds to a rotation in the complex k o  plane. This rotation 
is allowed since it does not cross the singularities of the integrand in equation (3.15). 

To keep the square-root term unchanged, define 

(3.16) 

v1 = -- 1 dk’dk’ 1njl+k2(k2+p2)[CLa*(d2k2+11 2e2 
2 J (2T)2 

2 c 2 1 1/2  1) (3.17) 

where now 

k = (k o)2 + (k ’) d2 = (do)2 + (d1)2. (3.18) 

A change in polar coordinates can be made and the angular integration performed, 

2e2 [pa *(d2k2+p2~2)1 /2 ] )  
A 1 

V1=--1im d k k l n  1+ ~ T A - ~ J ~  ( k2(k2+p2)  (3.19) 

where the limits on the momentum have been introduced. 

Note that for mass p equal to zero it follows from equation (2.44) that 
To make the integration simpler, only the massless case will be considered here. 

vo = 0. (3.20) 

Equation (3.19) reduces to 
A 1 

VI=-- lim dk k l n [ ( k 3 + 2 e 2 d ) ( k 3 - 2 e 2 d ) ] - 2  J A  dk k In k3). 
477 A+m (10 0 

(3.21) 
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-1,'O -0.6 -0.2 

The integrations are straightforward, all A-dependant terms cancel out, with the result 

0.2 06 $0 
d 

(3.22) 

with d2 defined by equations (3.16) and (3.18). 

plot is shown in figure 1.  The vertical scale is in units of 2e. 

which is, of course, the expected result. 

The effective potential may now be plotted using equations (3.20) and (3.22); the 

The minimum occurs when d is zero; there is no spontaneous symmetry breaking, 

Figure 1. The effective potential in one space and one time dimension. 
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